Development and Progression of Herbicide Resistant Weeds in MN (1980’s to 2013)

Jeffrey L. Gunsolus
gunso001@umn.edu

© 2012 Regents of the University of Minnesota. All rights reserved.

EXTENSION EDUCATION AND RESEARCH
PROJECT COOPERATORS

- F.R. Breitenbach – IPM Specialist
- L.M. Behnken – EE in Crops
- J. A. Coulter – Assoc. Prof., Dept. of Agronomy
- B. R. Durgan – Prof. Dept. of Agronomy, Dean of Extension
- T.R. Hoverstad – Scientist SROC
- G.A. Johnson – Assoc. Prof., Dept. of Agronomy
- B.D. Kinkaid – Scientist, Dept. of Agronomy
- D.W. Miller – Scientist, Dept. of Agronomy
- R. P. Miller – EE in Crops
- D. A. Nicolai – EE in Crops
- B. D. Potter – IPM Specialist
- L. A. Stahl – EE in Crops
- C. C. Sheaffer – Prof., Dept. of Agronomy
- D. L. Wyse – Prof., Dept. of Agronomy

It can all start with one weed

Single waterhemp plant in 2011 (Clay County, MN)
actual seed number per plant = 142,000
Scenario: seed number on 1 plant in 1 acre = 100,000 seeds
6,250,000 plants/A!! - 2 years later (2013)

Resistance is a Numbers Game!

74 plants/ft²
3.2 billion plants/A
Resistance = 1/1,000,000,000

Hypothetical development of a weed population shift

Adapted from Gunsolus. U. Minn. 1993.

Year 1
Means of dispersal:
- Water (especially for waterhemp)
- Machinery
- Wind
- Humans
- Animals / birds

Which of the following measures do you use to prevent the spread of new weed species?

IPM Assessment Survey – Breitenbach et al.

<table>
<thead>
<tr>
<th>Measure</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>I don’t clean equipment</td>
<td>16</td>
<td>30</td>
<td>51</td>
<td>58</td>
</tr>
<tr>
<td>I clean tillage equipment</td>
<td>18</td>
<td>18</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>I clean harvest equipment</td>
<td>8</td>
<td>10</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>I insist custom operators clean their equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Herbicide Resistance WSSA Definitions

“Herbicide resistance” is the inherited ability of a plant to survive and reproduce following exposure to a dose of herbicide normally lethal to the wild type. In a plant, resistance may be naturally occurring or induced by such techniques as genetic engineering or selection of variants produced by tissue culture or mutagenesis.

“Herbicide tolerance” is the inherent ability of a species to survive and reproduce after herbicide treatment. This implies that there was no selection or genetic manipulation to make the plant tolerant; it is naturally tolerant.

Mode of Action and Mechanism of Action

The term mode of action is often incorrectly used to refer to mechanism of action. Resistance mechanisms can evolve anywhere in the mode of action sequence.

Herbicide Mode of Action:
The plant processes affected by the herbicide, or the entire sequence of events that results in death of susceptible plants. Includes absorption, translocation, metabolism & interaction at the mechanism of action.

Herbicide Mechanism of Action:
The biochemical site within a plant with which a herbicide directly interacts. Site of action is sometimes used instead of mechanism of action.

Examples of Mechanism of Action on Labels

The product with this symbol on the label contains atrazine, an active ingredient in Group 5; the mechanism of action is binding to the Q8-binding niche on the D1 protein of the photosystem II complex in the chloroplast thylakoid membranes resulting in inhibition of photosynthesis.

The product with this symbol contains s-metolachlor, glyphosate, and mesotrione, active ingredients with three different mechanisms of action, designated by Group 15 - inhibition of very long chain fatty acids resulting in inhibition of cell division; Group 9 - binding to the EPSP synthase enzyme and Group 27 – inhibition of 4-HPPD resulting in bleaching of the plants, respectively.

SITE OF ACTION OPTIONS AVAILABLE IN CORN AND SOYBEAN

<table>
<thead>
<tr>
<th>Available Corn SOA #s</th>
<th>Available Soybean SOA #s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>
The Main Drivers of Herbicide Resistance

- Selection intensity – using the same weed management tactic again and again
 - Need for diversification of weed management tactics

- Allowing weed population size to increase in the seed bank
 - Increases probability of a R-trait
 - Need to prevent pollen and seed production

The Goal of Weed Management

- The short-term goal of weed management is to preserve yield; weed management does not increase yield

- The long-term goal of weed management is to deplete weed seed reserves and prevent additions of seed to the seed bank

PROGRESSION OF RESISTANCE IN MINNESOTA

- Resistance cases in the 1980’s focused on SOA#5 (atrazine) but were not an issue due to:
 - Reduced atrazine rates and use in MN
 - Trait maternally inherited
 - Fitness penalty for resistant plants

- My first significant educational effort regarding HRW’s was in 1992 – triggered by wild oat resistance to SOA#1 in 1991 and widespread use of SOA#2 in the 1990’s

- Initial focus was on single SOA resistance due to single gene mutations

Progression of Resistance in Minnesota

- In the 1990’s MN farmers readily adopted postemergence weed control because it decoupled planting date from spray date
 - 75% market share of Pursuit herbicide by the mid-1990’s.

- The ALS (SOA #2) technology of the time (e.g. Pursuit and Accent) quickly selected for several problem weeds but the problem was “solved” with glyphosate technology starting in 1996
 - Waterhemp resistance documented in 1994 www.weedscience.org

- Our problem weeds now are no different than when we left the Pursuit and Accent era of the 1990’s

- We need to rethink the total postemergence approach and diversify our weed management strategies
MN Soybean Herbicide Use Data
est. 6.9 million acres in 2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Area Applied PPI/PRE (%)</th>
<th>Area Applied w/glyphosate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>2004</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>2002</td>
<td>23</td>
<td>79</td>
</tr>
<tr>
<td>1999</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>1996</td>
<td>62</td>
<td>7</td>
</tr>
<tr>
<td>1994</td>
<td>71</td>
<td>4</td>
</tr>
</tbody>
</table>

RR Soybean introduced in 1996

In the mid-1990's ~75% of the acres were using a SOA #2 herbicide. By 2006 this was reduced to <2% of the soybean acres.

WEED EMERGENCE PATTERNS AND THE EFFECT OF TIME OF WEED REMOVAL ON SOYBEAN

Roundup PowerMax 30 fl oz/a + AMS 8.5 lb/100gal Applied at V1 on May 18, 2012

Roundup PowerMax 30 fl oz/a + AMS 8.5 lb/100gal V3 on June 4, 2012

Roundup PowerMax 30 fl oz/a + AMS 8.5 lb/100gal V5 on June 12, 2012
MN Corn Herbicide Use Data
est. 8.7 million acres in 2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Corn Area</th>
<th>Rate of Acetochlor w/ glyphosate</th>
<th>Area Applied PRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>23</td>
<td>1.35 lbs. ai/A</td>
<td>73 (%)</td>
</tr>
<tr>
<td>2005</td>
<td>49</td>
<td>1.27 lbs. ai/A</td>
<td>49 (%)</td>
</tr>
<tr>
<td>2003</td>
<td>50</td>
<td>1.73 lbs. ai/A</td>
<td>22 (%)</td>
</tr>
<tr>
<td>2002</td>
<td>43</td>
<td>1.58 lbs. ai/A</td>
<td>11 (%)</td>
</tr>
<tr>
<td>1999</td>
<td>62</td>
<td>1.61 lbs. ai/A</td>
<td>7 (%)</td>
</tr>
<tr>
<td>1996</td>
<td>73</td>
<td>1.72 lbs. ai/A</td>
<td>0 (%)</td>
</tr>
</tbody>
</table>

RR Corn Introduced in 1998

WEED EMERGENCE PATTERNS AND THE EFFECT OF TIME OF WEED REMOVAL ON CORN

Lamberton, 3-4 inch weed removal date - June 18, 2005
204 bu/A

Lamberton, 9-12 inch weed removal date – July 1, 2005
170 bu/A
Which herbicide application timings do you usually use in SOYBEANS

IPM Assessment Survey – Breitenbach et al.

<table>
<thead>
<tr>
<th>Method</th>
<th>2011</th>
<th>2010</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-plant incorporated</td>
<td>61%</td>
<td>36%</td>
<td>40%</td>
</tr>
<tr>
<td>Pre-plant surface</td>
<td>17%</td>
<td>40%</td>
<td>50%</td>
</tr>
<tr>
<td>Burndown</td>
<td>14%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>Pre-emergence only</td>
<td>12%</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>Post-emergence only</td>
<td>3%</td>
<td>6%</td>
<td>14%</td>
</tr>
</tbody>
</table>

Which herbicide application timings do you usually use in CORN

IPM Assessment Survey – Breitenbach et al.

<table>
<thead>
<tr>
<th>Method</th>
<th>2011</th>
<th>2010</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-plant incorporated</td>
<td>43%</td>
<td>40%</td>
<td>47%</td>
</tr>
<tr>
<td>Pre-plant surface</td>
<td>36%</td>
<td>22%</td>
<td>37%</td>
</tr>
<tr>
<td>Burndown</td>
<td>12%</td>
<td>11%</td>
<td>14%</td>
</tr>
<tr>
<td>Pre-emergence only</td>
<td>14%</td>
<td>14%</td>
<td>16%</td>
</tr>
<tr>
<td>Post-emergence only</td>
<td>22%</td>
<td>14%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Impediments to Weed Management

- **2013: Do you Plan to Use a Pre-emergence Herbicide in?**
 - **Soybean** (636 responses)
 - Yes: 65%
 - No: 35%
 - **Corn** (785 responses)
 - Yes: 78%
 - No: 22%

- **Durable Weed Management Practices Also Got Sidetracked by One-Year Farming Business Cycles**

- **Prevention vs. Remediation**
 - "Farmers are loathe to institute complicated preemptive resistance management schemes, especially if they cost more. Still, the best remedial strategy is to look over one’s shoulder and learn from the mistakes of others. When there is resistance somewhere to a pesticide under a similar cropping system, it is time to get scared, and not to say “it hasn’t happened here, therefore it won’t”. When the first resistance appears, and it is not spread throughout the population, further enrichment of resistant individuals in the population can be delayed.”

Jonathan Gressel et al. 1996.
In Molecular Genetics and Evolution of Pesticide Resistance
ACS Symposium Series; American Chemical Society; Washington, DC
PROGRESSION OF RESISTANCE IN MINNESOTA

- Earlier cases focused on SOA#5 (atrazine) in the 1980’s were not an issue due to:
 - Reduction in atrazine rates and use in MN
 - Trait maternally inherited
 - Fitness penalty for resistant plants
- My first significant educational effort regarding HRW’s was in 1992 – triggered by wild oat resistance to SOA#1 in 1991 and widespread use of SOA#2 in the 1990’s
- Initial focus was on single SOA resistance due to single gene mutations

Herbicide Resistance Characteristics

Low-Level Resistance
- A continuum of plant responses from slightly injured to nearly dead
- The majority of plants display an intermediate response
- Susceptible plants will be present in the population, especially when herbicide resistance is determined early

Examples
- Roundup, etc.
- Reflex, Valor, etc.
- Clarity, 2,4-D, etc.
- Gramoxone, etc.

High-Level Resistance
- Plants are slightly injured to uninjured
- Few plants have an intermediate responses
- Susceptible plants can be present in the population

Examples
- atrazine, Sencor, etc.
- Classic, Permit, FirstRate, etc.
- Select, Assure, etc.

Factors Affecting Speed of Selection

The length of time for selection of resistance varies by:
- Cultural practices
- Frequency of herbicide use
- Herbicide mechanism of action
 - Biology of weed species
 - Frequency of resistant biotypes among weed species
 - Mechanism of herbicide resistance
 - Differential uptake and translocation, compartmentalization and detoxification generally takes longer to evolve than altered SOA or overproduction of a specific enzyme.
What Does Glyphosate Resistance Look Like?
Photo Credits to Dave Nicolai & Jeff Stackler

PROGRESSION OF RESISTANCE IN MINNESOTA
- Rates of resistance development were greatest with SOA’s #1, and 2 and longer for 9
- Debates of tolerance vs. resistance and level of resistance slowed our response to glyphosate
- Issue grew from single to multiple species of concern
- Issue grew to multiple-resistance
- Issue is now evolving to multiple mechanisms of resistance to a particular herbicide
- End result is increasing risk uncertainty of herbicide effectiveness and available options

SITE OF ACTION OPTIONS AVAILABLE IN CORN AND SOYBEAN
Impacts of Herbicide Resistance to Weed Management Strategies

- ISU Reports waterhemp responses to labeled herbicide rates indicate:
 - 95% of the populations are resistant to SOA #2 - ALS
 - 58% of the populations are resistant to SOA #5 - Atrazine
 - 54% of the populations are resistant to SOA #9 - Glyphosate
 - 28% of the populations are resistant to SOA #27 - HPPD
 - 6% of the populations are resistant to SOA #14 - PPO
 - 30% of the populations are resistant to SOA#'s 2, 5, 9

- Resistance to multiple SOA's is also not uncommon
 - Consider establishment of RR alfalfa in a field of Giant Ragweed resistant to SOA #9 and #2

TAKE ACTION
A UNITED SOYBEAN BOARD / EXTENSION WEED SCIENCE THEME

Spray Attention
- Know Herbicide Site of Action and Herbicide Properties
- Manage Drift
 - Know environmental Conditions
 - Know Your Neighbors Crops

In Field Tactics
- Rotate Crops
- Rotate and Use Multiple Herbicide Sites of Action
- Increase Cultivation

The Bottom Line
- Manage Risk
- Know Cost-Benefits of Practices
- Know the Cost of Poor Weed Control

MN Soybean Research & Promotion Council Funded Take Control

- Now is the time to **Take Control**
- Develop **Long Range Durable Plans**
- Use **PRE/POST** Herbicide **Systems** on your farm.
- Integrated Weed Mgmt. is more than **Integrated Herbicide Mgmt.**
Biological Parameters

<table>
<thead>
<tr>
<th></th>
<th>Giant Ragweed</th>
<th>Lambsquarters</th>
<th>Common Ragweed</th>
<th>Waterhemp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Emergence</td>
<td>Early (10% by 150 GDD)</td>
<td>Early (10% by 150 GDD)</td>
<td>Moderate (10% by 300 GDD)</td>
<td>Late (5% by 150 GDD)</td>
</tr>
<tr>
<td>Duration of Emergence</td>
<td>Short</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Prolonged</td>
</tr>
<tr>
<td>Depth of Emergence</td>
<td><6 inches</td>
<td><1 inch</td>
<td><2 inches</td>
<td><1 inch</td>
</tr>
<tr>
<td>Relative Competitiveness</td>
<td>10 (Our most competitive weed species)</td>
<td>3</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Seed Production Potential (w/o competition)

<table>
<thead>
<tr>
<th></th>
<th>Giant Ragweed</th>
<th>Lambsquarters</th>
<th>Common Ragweed</th>
<th>Waterhemp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10,300 per plant</td>
<td>72,500 per plant</td>
<td>3,500 per plant</td>
<td>35,000 per plant</td>
</tr>
</tbody>
</table>

Seed Dormancy

- Requires overwintering
- Increases as burial depth increases

Seed Longevity

- 99% depletion in 2 years
- 50% depletion in 12 years
- 50% depletion in 1 year
- 50% depletion in 3 years

Rate of Decay

- Greatest predation on soil surface
- Approx. 20% in first winter at 1-4 inch depths
- Greatest predation on soil surface
- No information found

Lower your risk of developing herbicide-resistant weeds

Reference Corn + Soybean Digest, Nov. 2013

- Identify your main target weeds
- Use effective, multiple SOA’s (2 - 3) on target weeds
- Rotate SOA's by year (multi-year planning)
- Start with a preemergence herbicide
- Note SOA groups that have a low risk for selecting for herbicide-resistant weeds (e.g. #15)
- Control weeds when they are small
- Don’t let escapes produce seed

WHEN PLANNING A HERBICIDE RESISTANCE MANAGEMENT STRATEGY CONSIDER:

This approach requires some planning and isn’t as easy as the multiple application, glyphosate approach to weed management but it is still

A LOT EASIER THAN…………………………
Hidden Impacts of Herbicide Resistance

- As the frequency of herbicide resistant traits increase the likelihood of migration increases
 - Palmer Amaranth in MI, IN, WI via cotton seed for dairy and CRP
 - Movement via forage
 - Movement via manure
 - Movement via combine
 - Movement via pollen (yards not miles)
 - Movement via water (runoff and flooding)
 - Movement from ditch banks and field margins

Palmer amaranth

- *Amaranthus palmeri* - “Palmer pigweed”
- Native to the desert Southwest
 - Thrives in hot climatic conditions
 - Tolerant to drought
- One of 10 common pigweed species in the great plains and southeast U.S.
- Not common in the upper Midwest
 - No reports of Palmer amaranth found in U of M herbarium
NOTE PALMER’S RAPID GROWTH RATE

Waterhemp on left, Palmer amaranth on right, both planted on the same day

The Cost of Reactive Weed Management Strategies

- Remediation requires the need to deplete weed seed reserves
 - Published net increases in production costs
 - $19.40/A for glyphosate R palmer amaranth in GA/AR
 - $19.40/A for glyphosate R waterhemp in MO
 - To attain zero seed production of Palmer amaranth in AK now requires 5-8 herbicides + hoeing
 - Translating net increases in soybean production costs to MN farmers
 - $133,860,000 increase in production costs and this estimate does not include losses due to weed competition

If Herbicide Resistant Weeds Continue to Increase, What is at Risk in MN Corn and Soybean Cropping Systems?

- Loss of:
 - Yield and Profit
 - Loss of Technology
 - Multiple resistance
 - Replenished weed seed banks
 - Applicator stress
 - Loss of simplified weed control and flexibility in choosing your cropping system

Time of postemergence weed control is a function of timing

The Difference of 2 Days!

Flexstar (SOA # 14) on 6” Palmer

Steckel 2010

The Cost of Reactive Weed Management Strategies

Remediation requires the need to deplete weed seed reserves

- Published net increases in production costs
 - $19.40/A for glyphosate R palmer amaranth in GA/AR
 - $19.40/A for glyphosate R waterhemp in MO
 - To attain zero seed production of Palmer amaranth in AK now requires 5-8 herbicides + hoeing

- Translating net increases in soybean production costs to MN farmers
 - $133,860,000 increase in production costs and this estimate does not include losses due to weed competition

If Herbicide Resistant Weeds Continue to Increase, What is at Risk in MN Corn and Soybean Cropping Systems?

- Loss of:
 - Yield and Profit
 - Loss of Technology
 - Multiple resistance
 - Replenished weed seed banks
 - Applicator stress
 - Loss of simplified weed control and flexibility in choosing your cropping system

Photo by Liz Stahl – Regional Extension Educator
Minnesota Extension Service
Rethink our weed management strategies

Herbicide Inputs
- Assume no new herbicide SOA’s
- What non-chemical weed management tactics should we encourage farmers to adopt over the next couple of years?

Crop Rotation
- Goal is to reduce the seed bank

Herbicide Inputs
- Move away from Total Post & One-Pass with delayed PRE
- Start with a PRE
- Post – target max. of 3-inch weeds

Cultural Control
- Inter-row cultivation
- Increase crop seeding rate
- Work fields closer to planting date
- Delay planting if targeting early-emerging weeds
- Develop weed maps

Cultural Control
- In-row cultivation
- Increase crop seeding rate
- Work fields closer to planting date
- Delay planting if targeting early-emerging weeds
- Develop weed maps

Crop Competition
- Via Crop Rotation
- Focus on early-season weed control
- Narrow rows

Crop Competition
- Via Crop Rotation
- Focus on early-season weed control
- Narrow rows

Final Points – Weeds reflect management practices

Herbicide resistance can start with just one weed

Delaying weed emergence by just one week can make an enormous difference in weed growth and competition with the crop. (Courtney is 6 feet, 3 inches tall.)