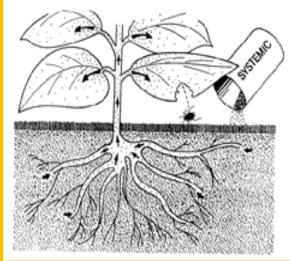
Dec 9, 2013, Environment, natural resources, agriculture finance, Protecting bees by understanding systemic insecticides


Vera Krischik, Associate Professor, Department of Entomology, University of Minnesota and others

- **Protecting bees by understanding systemic insecticides**
- Visit <u>www.entomology.umn.edu/cues</u>
- "Pollinator conservation" section of website, online bulletins on bees and insecticides, Master Gardeners workshop, papers, videos, research

So why should we care about bees?

- Bees pollinate native plants that produce seeds and fruits for wildlife from bears to voles.
- 300 bee pollinated plants are commonly used as a food source (McGregor 1976).
- 35% of the food we eat is pollinated by bees (Klein et al. 2007, Vaughan and Black 2007).



Controversy over neonicotinyls and bees

- 2013 June: European Union enacts a 2 year ban on neonicotinyl insecticides starting in December 2013
- 2013 January: European Union concludes neonicotinyl treated-seed are a bee risk
- 2012 March: US Beekeepers petition for clothianidin to be withdrawn from sale
- 2008-2011: Bee deaths are linked to the planting of neonicotinyl treated-seed crops
- 2009: California calls for a review of the effects of neonicotinyl insecticides on bees
- 2004-2009: New York restricts use of imidacloprid, thiamethoxam, dinotefuran, and clothianidin
- 1996: France bans imidacloprid use as treated-seed on sunflowers, Germany, Spain, Italy and Slovenia, follow

Contact compared to systemic insecticides

- **Contact insecticides:**
- Many used; sprayed on foliage
- Insect must eat leaf or walk on leaf to be killed
- Toxicity lasts 1-3 weeks
- Flowers that open after spraying do not contain insecticides.

Systemic insecticides:

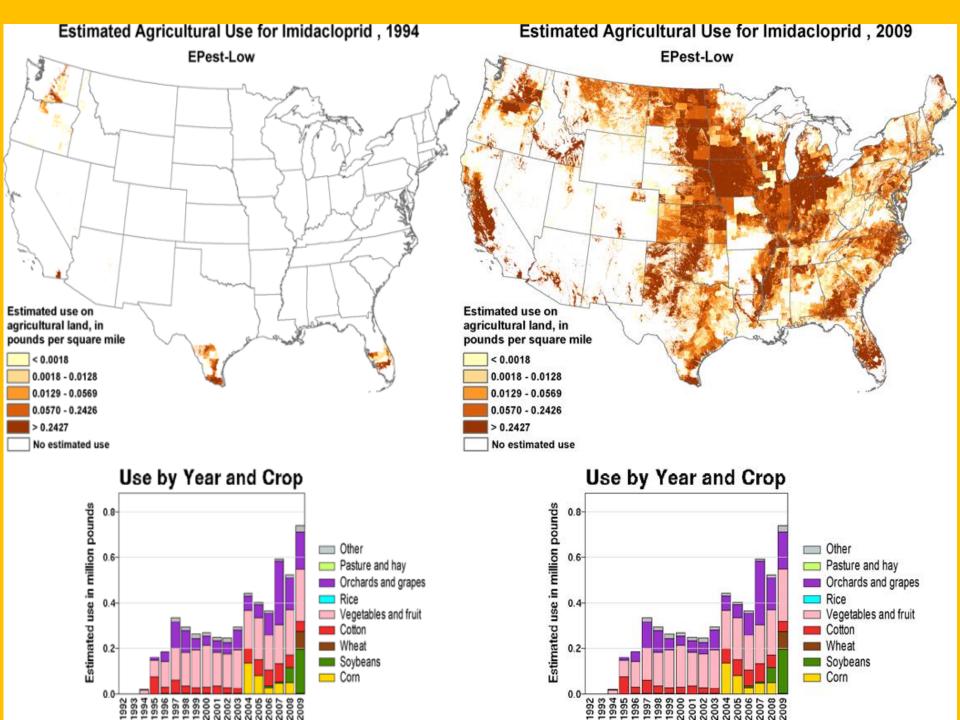
- Uncommon; treated-seed, soil drench, trunk-inject
- Insect must eat leaf, pollen, or nectar to be killed
- Toxicity can least for months to years, unknown
- Flowers that open will have the insecticide in pollen and nectar for months to years, unknown

Threats to bees: soybean aphid management

- Organophosphates + Pyrethroids, are very toxic to bees.
- Organophosphates
- Dimethoate is highly toxic, LD₅₀ 15 ng/bee
- Chlorpyrifos is toxic, LD₅₀ 70 ng/bee
- Methyl parathion is highly toxic, LD₅₀ 11 ng/bee
- Coumaphos is 180 times less toxic, with LD50 of 2030 ng/ bee
 Pyrethroids
- Esfenvalerate is highly toxic, LD₅₀ 15 ng/bee
- Cyfluthrin is highly toxic, LD₅₀ 37ng/bee
- Zeta-cypermethrin is extremely toxic, LD50 2 ng/bee
- Lambda cyhalothrin is highly toxic, LD₅₀ 38 ng/bee
- Permethrin is extremely toxic, LD₅₀ 8 ng/bee

Systemic insecticides

- **Systemic**
- **Organophosphates**
- aldicarb (Temik), oxamyl (Vydate), dimethoate (Cygon)
- Neonicotinyl
- imidacloprid (Marathon, Merit), clothianidin, thiamethoxam, dinotefuran
- **Novel mode of action** pymetrozine (Endeavor)


Translaminar, or local, systemic activity Microbial- abamectin (Avid) IGR- pyriproxyfen (Distance) PR- chlorfenapyr (Pylon) SP-spinosad (Conserve) OP- acephate (Orthene) C-Carbofuran (Furadan) Neonicotinyl insecticide toxicity to bees Sublethal dose: more than 20 ppb (2ng/bee) reduces foraging, memory, and navigation, LD50 studies evaluate for mortality, not foraging

Lethal dose	Oral LD ₅₀ ng/bee in 20µL	Pollen/ nectar ppb (ng/.1gbee)	Reference
imidacloprid	3.7-40	37-400	Schmuck et al. 2001, EFSA 2013
clothianidin	3-22	30-220	Iwas et al. 2004, EFSA 2013
dinotefuran	23-47	230-470	EFSA 2013
thaimethoxam	5-30	50-300	EFSA 2013

Water solubility: Neonicotinyl insecticides

	imidacloprid	clothianidin	dinotefuran	thiameth- oxam	emamectin benzoate
name	Merit Marathon	Arena	Safari	Flagship Meridian	Tree age
кос	132-310	160	23	64	283,000
Solubility (mg/l)	514	259	259	327	101
LD50 (acute rat oral) (mg/kg)	>5,000	4,870	>2,000	5,523	1,516

dinotefuran is 80 times more water soluble than imidacloprid emamectin benzoate has very low mobility (KOC) and long duration

- Incident, Very little published data on neonicotinyl residue in pollen and nectar of trees.
- Around 25,000 bumblebees and others were found dead under trees at the Target store in Wilsonville, Oregon on Monday, June 17th. The neonicotinyl insecticide dinotefuran (label Safari) was applied pre-bloom according to label.

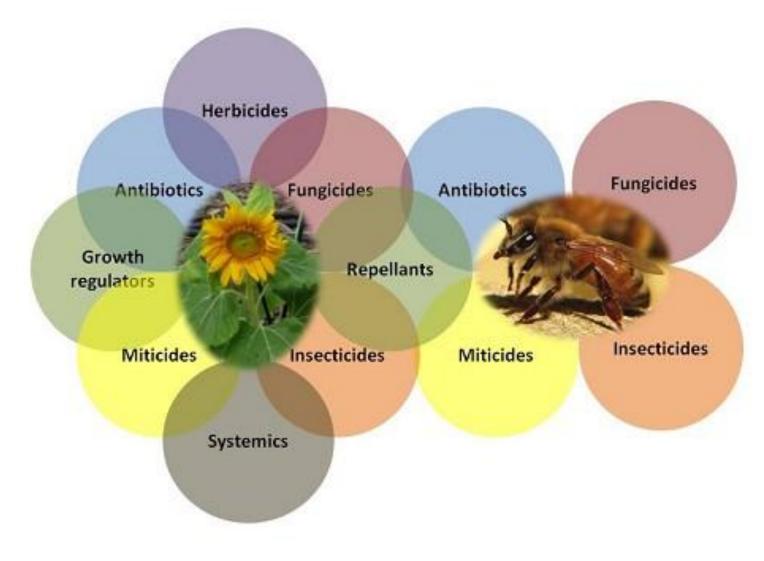
Dead in the parking lot, Bombus vosenesenskii

Residue data confirmed dinotefuran, but data was not released by Oregon Depart. Agriculture. Another bee kill occurred in Hillsboro, OR. Trees were covered in nets and dinotefuran use is banned for 6 months in Oregon.

Neonicotinyl insecticide use in 2011

- 143/442 US million acres use neonicotinyl insecticides
- 83+ million acres of corn have neonicotinyl treated-seed and honeybees use corn for pollen

Active ingredient (ai) in Ibs			
	imidacloprid	clothianidin	thiamethoxam
MN	52,048	43,663	68,876
CA	348,247	3,812	30,687
US	700,000	1,2000,000	990,000



Site	Imidacloprid Treatment Rate
Seed	0.11 mg Al
treatment	imidacloprid/1 plant
Gaucho*	FRENCH RESEARCH
Field crops	4 mg/sg ft little research
Greenhouse/	300 mg Al/pot
nursery pot	Krischik research
Landscape,	630 mAI/plant
rose	Krischik research
15 in DBH 24 in DBH	50 g Al 76 g Al NOT RESEARCHED

Residue in pollen and nectar, very few papers, 172 ppb kills a bee

Plant	Imidacloprid ppb	Reference
Sunflower	2 nectar	Schmuck et al. 2001
(treated-seed)	4 pollen	
Pumpkin	4 - 12 nectar	Dively & Hooks 2010
(soil drench)	37 - 87 pollen	
Milkweed	6000 ppb nectar	Krischik 2013
(soil drench)		
Eucalyptus tree	550 ppb nectar	Paine et al 2011
(soil drench)		
Horsechestnut tree	5-283 blossom	Bayer, unpulished, Maus et
(trunk injection)		al. 2004b
Serviceberry	1,038- 2,816	Bayer, unpublished,
(soil drench)	blossom	Doering et al. 2005a,b

Systemic insecticides are only one factor contributing to bee decline, but we need to understand their effects on bee foraging and colony health.

